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Hence, a distortionless stripline, which is reflectionless for right-
moving waves, should have an exponentially tapered characteristic
impedance that increases if GoZo > RoYp and decreases if GoZo <
RoYs. The power gain follows from a derivation that is similar to
that in (23) and (24), but both R and G are different from zero here.
The result is

I3

P,
B = XD [—(GoZo + RoYo) - 1].

7

(2%)

V. DISCUSSION

A new condition for distortionless nonuniform transmission lines
has been developed that is a generalization of the Heaviside distor-
tionless condition. The derivation uses the wave-splitting technique,
and it is carried out in the time-domain. It is shown how the distortion
can be eliminated by matching the series resistance and shunt
conductance to the slope of the characteristic impedance. One should
notice that the model assumes that the transmission line parameters
are nondispersive. This means that if one cannot neglect dispersion,
the distortionless condition can only be made valid for a limited
band of frequencies. The conditions imposed on the transmission
line parameters are that R, G and the slope of Z are piece-wise
continuous.

REFERENCES

1] J. Lundstedt and S. Str6m, “Simultaneous reconstruction of two param-
eters from the transient response of a nonuniform LCRG transmission
line,” to be published in J. Electron. Waves and Applic.

[21 G. Kristensson and R. J. Krueger, “Direct and inverse scattering in
the time domain for a dissipative wave equation. Part I: Scattering
operators,” J. Math. Phys., vol. 27, pp. 1667-1682, 1986.

[3] S.He and S. Strém, “Time domain wave splitting approach to transmis-
sion along a nonuniform LCRG line,” J. Electron. Waves and Applic.,
vol. 6, pp. 995~1014, 1992.

[4] V. H. Weston, “Root of a second order hyperbolic differential operator
and wave splitting,” in Invariant Imbedding and Inverse Problems, J.
P. Corones, G. Kristensson, P, Nelson, and D. L. Seth, Eds. SIAM,
1992, pp. 139-152.

{51 S. He, “Factorization of a dissipative wave equation and the Green
functions technique for axially symmetric fields in a stratified slab,” J.
Math. Phys., vol. 33, pp. 953-966, 1992.

[6] S. He and A. Karlsson, “Time domain Green function technique for a
point source over a dissipative stratified half-space,” Radio Sci., vol. 28,
pp. 513-526, 1993.

{71 S. He, “Green functions technique for nonuniform LCRG transmission
lines with frequency-dependent parameters,” J. Electron. Waves and
Applic., vol. 7, pp. 31-48, 1993.

{8] J. Lundstedt and S. He,. “Signal restoration after transmission through
a nonuniform LCRG line,” IEEE Trans. Microwave Theory Tech., vol.
42, no. 11, pp. 2087-2092, 1994..

1389

New Model of Coupled Transmission Lines

Adam Abramowicz

Abstract—The paper shows that an existing description of coupled
transmission lines is inconsistent and proposes a new model based truly
on the mutnal coupling concept. In the existing formulation a series
electric coupling and parallel magnetic coupling are combined. In the new
formulation the parallel electric and magnetic couplings as well as series
electric and magnetic couplings are used. Obtained model of coupled lines
has physical background related to the odd and even type of propagation
and agrees with the practical results.

1. INTRODUCTION

When two unshielded uniform TEM transmission lines of the
same impedance Z are located in close proximity, they become
electromagnetically coupled via their associated electric and magoetic
fields. Two coupled lines can be excited in the two ways: “even
mode” excitation or “odd mode” excitation, i.e., in-phase or opposite-
phase, equal-amplitude excitations. The characteristic impedances
Zye and Zp, associated with these modes are defined as the input
impedance of an infinite length of one line, in the presence of (and
thus electromagnetically coupled to) the second line, also of infinite
length, when both are excited in the appropriate manner. A knowledge
of Zo. and Zo, as functions of line parameters is essential to the
design of filters, directional couplers, and related devices, because
the coupling coefficient between lines can be calculated from them.
As it has been shown in [1] the coupling coefficient k between two
coupled lines when they are properly terminated can be calculated
from the following formula:

ZOe - Z()o

k= o0——F0—.
ZOe+Z00

M
Lines are properly terminated when the matching impedance Zo is
taken as

Zo = VZoeZoo- )

The impedance Zy is always less than the impedance of single line
Z (without coupling), thus four mentioned impedances satisfy the
following inequality:

Zoo < Zo < Z < Zge. (3)

All four impedances can be simply expressed in terms of the
capacitance per unit length of the particular transmission line in
question: if this parameter is denoted by C' (F/m), then
1
Zrfer = — 4
vC @
where: v is the velocity of light in free space and £, is the dielectric
constant of the medium filling the line.
It should be also noted that for the uniform coupled lines the
velocity of light is the same for odd or even excitations and equal to
the velocity of light in the single (uncoupled) line.
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Fig. 1. Lumped element representation of the elemental length of coupled
lines.

II. EXISTING DESCRIPTION OF COUPLED LINES [2]

In the traditional description of two symmetrical coupled trans-
mission lines [1], [2] the following set of differential equations is
assumed (see Fig. 1):

du __p By 00
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where
Ly is an inductance per unit length of the single line

with the presence of second line taking « and i in the
second line to be zero,

Cy is the capacitance per unit length of the single line
with the presence of second line taking » and ¢ in the
second line to be zero,

M is the mutual inductance of coupled lines per unit
length,

E is the mutual capacitance between lines per unit
length

As in any system involving coupled linear circuits, we have a set of
simultaneous linear differential equations which admits a particularly
simple set of solutions: the normal modes of the system. In this case
we have four normal modes (two in each direction) characterized by
fixed ratios of wo/u; and iz/i; which do not change as the wave
propagates. In our case the modes are characterized by

oy
U1
u1i1 = u2i2. (6)

The choice of the plus sign corresponds to the even mode excitation,

the minus sign to the odd mode excitation. In either normal mode

equal power is associated with each line. Letting

E M

—, kr = —.

Ch Ly

Equation (5) reduces to the familiar transmission line equations
81,
ot

du,
ot

ko = )

Ou,
0z
di,
9z

+ Lyl k) 2L =0

+Ci(1F ke) 52 =0 ®)

where j = 1, 2.
From these the velocity of propagation
!
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v

®
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Because v must be the same for all modes kr, = ke = k

v= ——L— (10)

VI CL(1 = k?)
Because the velocity of propagation must be independent of %, thus
L, and C, raust vary as (1—%*)~". Oliver [2] has made a groundless
assumption that

C

T1—k2

L1 2L, Ch (11)
where L and C are the inductance and capacitance of the single
uncoupled line

As a result the impedances of the even and odd mode can be
expressed

Zoe :Z(1+k)

Zoo = Z(1 — k) (12)

and the impedance of a single (uncoupled) line can be expressed by
Zpe, Zoo and k as

1
Z = ZveZoo Niesrh
The coupling coefficient k—(12)—is exactly the same as (1). Ob-
tained (12), (13) are in a fair agreement with the practice (they suffer
accuracy for tight couplings) but they have been obtained under the
unjustified assumption (11).

Looking back at the sets (5) and (8), it is easy to recognize that
they describe the mutual parallel coupling of two inductances and
the mutual capacitive series coupling of two capacitances which are
well known [3]-[6] (by the way, they appear in the paper [2] but two
paragraphs later) at least as the impedance and admittance inverters
[6], and are often applied to the coupled lines description [4], [6].

In the mutual parallel magnetic coupling L; = L, while in the
capacitive series coupling 'y = C. The definitions of the coupling
coefficients are expressed as

_E M
ek LT
Assuming that k7, = ko = k the velocities of propagation can be
obtained from (8)

13

ko (14)

et (5)

VLC( - k?)
that are clearly different from the velocity of propagation of single
uncoupled line which is

ki

1
= . 16
e (16)
Consequently the even and odd mode impedances can be expressed
as

14k
Foe =TT
1-%
Zvo =Z | ——
0 Ty 17
and the impedance of a single (uncoupled) line is
Z =\ ZoeZyo- (18)

The coupling coefficient % resulting from (17) is again the same as
(D.

Equations (15), (17), and (18) describing Oliver’s model of coupled
lines [2] cannot be accepted because the velocities of propagation
for the even and odd modes are different than that for the single
uncoupled line.
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To briefly sum up the Oliver’s theory it must be said that his
equations are inconsistent and his theory is mistaken. Although (1),
(12), and (13) are in fair agreement with the factual data, they have
been obtained through the misinterpretation of the initial system (5)
and the groundless assumption (11).

III. NEw MODEL OF COUPLED LINES

In the proposed new model both electric and magnetic mutual
couplings are used twice: in the parallel and series coupling. The
model is based on a physical phenomenon of coupled lines behavior.
When two lines are situated in an infinite distance they are uncoupled.
While the distance is decreased the lines become coupled and
two types of an excitation are possible. The even and odd mode
impedances relate to these excitations. The values of the Zy. and Zo,
depend on the coupling coefficient or strictly speaking the distance
between lines. In the coupled state the self inductance and capacitance
of lines are changed according to the strength of coupling, thus these
changes depend on the coupling coefficient. It should be added that
they depend on the coupling coefficient only . A set of differential
coupled transmission lines equations describing two (electric and
magnetic) parallel couplings and two (electric and magnetic) series
couplings can be written

Ou, 1=+ kngp Oi
o p I e T
oz + 1F krps Ot
0i, 1F¥es Ou,
bt} =L = 19
Oz 1+kg O (19)
where
L is an inductance per unit length of the line with the
absence of second line,
C is the capacitance per unit length of the line with the
absence of second line,
kars is the series magnetic coupling coefficient,
kes is the series electric coupling coefficient,
karp is the parallel magnetic coupling coefficient,
kep is the paraliel electric coupling coefficient,
Jj=12

The coupling coefficients kas. and kg, for the series couplings are
defined by the following relations {7], [8]

E, L
kps = —, kys = 2
5 c Mo = 3 (20)

where
M, is the series mutual inductance of coupled lines per

unit length,
E, is the series mutual capacitance between lines per unit

length

while the coupling coefficients ks, and kg, for the parallel couplings
are defined by the complementary relations [7], [8]:

M,

CEp = —— = —= 21
kop =g kwp =7 2D
where
M, is the parallel mutual inductance of coupled lines per
unit length,
E, is the parallel mutual capacitance between lines per
unit length
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Fig. 2. Configuration of coupled slab-lines.
subsequently, from (19) the velocities of propagation
1
Ve =
ILC (]- + kMP)(l - kES)
(1 + kEp)(l - kl\/fs)
Vo = ! 22)

(1 = kunp)(1 + ki)
\/LC (= )L+ kazo)

which are equal to the velocity of propagation of the single uncoupled
line when

kup =kpp = kp

and
kMs = kEs = ks
The impedances of the even and odd mode are
o l+k
Zoe =2 1,
1-%
Zoo =2 15 F. (23)

and the impedance of a single (uncoupied) line Z can be expressed
by ZOe, Z()D and kp, ks as
1— k2

Z = ZyeZpo —mm——=.
J1~-k2

The coupling coefficients k. and k, found from (23) are as follows:
Zoe + Zoo — 22
Zoe — Zoo

k= Z(Zoo + Zoe) — 2Z0eZ00

L Z (ZOe - ZOO) )
The total coupling coefficient % in the most interesting case of two
quarter wave length coupled lines terminated by the impedances Zo
found according to the equation (2) can be expressed by the coupling
coefficients k, and k, as:

24

ks =

(25)

k= Foths

1+ kpks
The coupling coefficient & calculated according to (26) is the same
as calculated from (1).

(26)

IV. AN ExampLE OF COUPLED LINES

As an example two coupled slab lines are analyzed. The imped-
ances of a single line (Z) and coupled lines (Zo. and Zo,) are taken
from [9]. In fact in [9] the capacitances of lines are given but from
(4) the impedances can be immediately found. These impedances
will be used to check the consistency of the old and new model
of coupled lines. The configuration of two-conductor slab-lines is
presented in Fig. 2. The parameters of the structure, impedances of
coupled lines Zy. and Zy,, coupling coefficients k, kp, and k., and
the impedances of a single uncoupled line Z calculated from (14)
and (25) are presented in Table 1.
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IMPEDANCES AND COUPLING COEFFICIENTS OF COUPLED SLAB-LINES (d/b zA(])ill-;ETI-{E IMPEDANCE OF A SINGLE RoD BETWEEN PARALLEL PLANES Is 69.30 )
| sib | Zo /0 | Zy /O k k, Kk, Z(14) /Q | 225/ Q
0.08 | 90.44 33.52 .4592 -.2573 .6408 61.98 69.30
0.12 88.35 39.60 3810 -.2186 5536 63.97 69.30
0.16 | 86.43 44.23 3329 -.1882 .4818 65.33 69.30
0.20 | 84.68 47.93 2771 -.1631 4211 66.31 69.30
0.24 83.08 50.96 2396 -.1421 3692 67.02 69.30
0.40 | 78.04 58.95 .1393 -.08447 | .2212 68.50 69.30
0.60 | 74.13 64.01 .07326 | -.04625 | .1191 69.07 69.30
0.76 | 72.27 66.15 .04415 | -.03028 | .07434 69.21 69.30

The results presented in Table I clearly show that although the
coupling coefficient between lines resulting from the old model is the
same as that obtained from the new model, the new model exactly
describes relations between the impedances Z, Zo. and Zo., and the
coupling coefficients &, k,, and k,, while the old model is inconsistent
(see column 7 in Table I).

The coupling coefficients k, and ks are the “internal” coupling
coefficients that depend only on the distance between coupled lines
and their dimensions. The “external”—overall coupling coefficient k&
depends on the impedances terminating coupled lines.

The parallel coupling coefficient k, can be related to the even
mode of propagation (the electromagnetic fields are in phase) and the
series coupling coefficient &k, (the sign “~” in Table I) can be related
to the odd mode of propagation (the electromagnetic fields are out of
phase). The electromagnetic field of coupled lines is a superposition
of two field distributions: the even and odd mode.

For small couplings (k¢ < 0.1) (26) can be simplified to

k= ky+ ks. @7)

V. CONCLUSION

The Oliver’s equations (12) and (13) have been used for years
because they fairly well agree with the practice, but they have
been obtained from the false model and groundless assumption.
The presented new model relates the coupling coefficient between
transmission lines to the odd and even types of excitation, thus to
the electromagnetic field distribution. Four coupling elements and
consequently four coupling coefficients are used to describe coupling.
The series capacitor E, and series inductance M, are responsible
for the series coupling related to the odd mode of propagation. The
shunt (parallel) capacitor F, and shunt (parallel) inductance M, are
responsible for the parallel coupling related to the even mode of
propagation. The electric coupling coefficient and magnetic coupling
coefficient are equal in both series and parallel types of coupling,
accordingly the series and parallel coupling are described with only
one coupling coefficient ks or %k, respectively. The total coupling
coefficient results from two coupling coefficients of series ks and
parallel %k, couplings.

Obtained equations describing relations between impedances Zo.,
Zoo, Z and the coupling coefficients k., and k, are in excellent
agreement with the theory described in the introduction and with the

experimental results even for tight couplings. The main disadvantage
of the Oliver’s model—unequal velocities of propagation has been
eliminated.
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